
An understanding of how a spring mass system responds 
to vibratory influences is helpful in understanding, 
recognizing and solving many problems encountered in 
vibration measurements.  In this application note the 
combined effects of system mass, stiffness, and damping 
properties are presented to reveal the cause and 
characteristics of resonance. 
 
All machines have three fundamental traits, which 
combine to determine how the machine will react to 
excitation forces.  These traits are stiffness K, damping 
D, and mass M.  These traits actually represent forces 
inherent to every machine and structure, tend to resist or 
oppose vibration. 
 
From an analysis standpoint, it should be remembered 
that machines, along with their supporting structures, are 
complex systems consisting of many spring-mass 
systems, each with its own natural frequency.  Also, each 
of these systems may have differing degrees of freedom 
with a differing natural frequency.  This collection of 
possible resonant frequencies, and the many excitation 
frequencies, all combine to make resonance a very 
common problem for the transient vibration analyst.  
Understanding the basics of how a system responds to 
vibratory forces is important to anyone involved in 
vibration measurement, analysis, and balancing.  From a 
measurement standpoint, it is important to remember that 
every object has a resonant frequency...machinery, 
pickups, brackets, etc.  Resonance of a pickup mounting 
bracket, or the pickup itself, will introduce significant 
errors to measurements. 
 
RESTRAINING FORCE 
 
The combined effects of the restraining forces of 
stiffness, damping, and mass determine how a system 
will respond to a given exciting force.  Mathematically the 
relationship is represented by: 
 

M a + D v + K x = Me ω² e sin(ω t - θ) 
 
For simplification, the above equation can be written as: 
 
Mass term + Damping term + Stiffness Term = Restraining Force 

The restraining forces, represented by the various terms 
in the equation, are what determine how a rotor behaves 
throughout its operating range.  Any excitation force, 
such as unbalance, is always in equilibrium with the 
restraining forces of mass, damping, and stiffness.  The 
amount of measured vibration, as a result of these 
combined forces, will depend upon the combined effect of 
all three terms in the equation.  The phase angle (θ) 

change as a rotor increases speed and surpasses a 
resonance region is dependant upon on the relationship 
between the various terms. 
 
PHASE RELATIONSHIP 
 
To understand the phase relationships of the terms, 
consider that the mass term is proportional to 
acceleration, damping term is proportional to velocity, 
and the stiffness term is proportional to displacement.  In 
equation form, the acceleration term = -x ω² sin(ω t) and 
the velocity term = x ω cos(ω t).  Examining the 
relationship of the acceleration and velocity equations, a 
90° phase difference exists as the terms are integrated.  
Another integration produces the stiffness term that is 
proportional to displacement (x) only, and the relationship 
between the stiffness and damping terms have another 
90° phase shift. 
 
The effects of frequency (ω) should also be considered 
along with the phase shifts noted.  Stiffness being 
proportional to displacement only, and not influenced by 
frequency, means that essentially the stiffness term is 
constant throughout all frequency ranges.  However, the 
damping and mass terms are influenced by ω and ω², 

respectively. 
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Below Resonance 
 
 
 
 
 
 
 
 
 
If each of the individual terms are represented by a 
vector, and the influences of frequency are included, the 
result is a type of graph, similar in shape to a triangle.  
The figure is a graphical representation of the 
relationships of the terms at low frequencies, i.e. slow 
rotor speeds.  The total restraint vector is the summation 
of all three-vector terms.  Note that the damping and 
mass terms do not have much influence on the total 
restraint at low frequencies, leaving the stiffness term as 
the dominant term.  This means that at frequencies below 
the resonance frequency the rotor behaves as a pure 
spring, sometimes called a stiff shaft rotor.   
 
At Resonance 
 
 
 
 
 
 
 
 
 
 
As the rotor frequency increases, the influence of the 
damping and mass terms become greater due to the 
influence of ω and ω² in the mass and velocity terms.  At a 
certain frequency the stiffness and mass terms cancel 
each other due to the 180° phase difference in the terms.  
The figure presents the vectorial relationships and the 
resultant vibration amplitude response at resonance 
condition. 
 
When these terms cancel each other the only remaining 
restraint term is the damping term to control the system 
vibration.  As the stiffness and mass terms approach the 
point of canceling each other, the system's vibration 
amplitude will increase to a maximum, constrained only 
by the available damping from any lubricant present.  At 
resonance the system has lost the restraining forces of 
the stiffness and mass terms.  A machine supported by 

This phenomenon is referred to the resonance frequency 
or "critical" speed.  Operation in this zone should be 
avoided since any change in the available damping can 
have a dramatic effect upon the measured vibration 
levels. 
 
Above Resonance 
 
 
 
 
 
 
 
 
 
 
 
As the rotor frequency continues to increase, the mass 
term, which is proportional to ω², becomes the 
predominant portion of the total restraint force, growing 
faster than the other terms.  The figure shows the vector 
representation of the forces and the vibration amplitude 
at high rotor frequencies.  Note that as speed increases 
further the phase angle change approaches another 90° 
shift.  The rotor behaves as a pure mass with little impact 
from the constant stiffness term and the relatively slowly 
changing damping term.  A rotor operating in this region 
is called a flexible rotor since it rotates around its mass 
centerline, not its geometric centerline. 
 
Thus, as rotor frequencies increase, three regions are 
found where one of the component terms is dominant 
over the other two terms.  The summation of the three 
terms is represented by the vector labeled:  Total 
Restraint.  The total restraint vector is what is measured 
as vibration amplitude and its associated phase angle.  
As the rotor speed passes through each of these regions 
the measured phase angle will change by 90° and will 
exhibit an overall phase shift of 180° as it surpasses a 
critical "resonance" speed:  Nc. 
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